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Nonequilibrium molecular dynamics simulations are reported for the shear viscosity of the Gaussian
core model �GCM� fluid over a wide range of densities, temperatures and strain rates. A transition
from Newtonian and non-Newtonian behavior is observed in all cases for sufficiently high strain
rates. On the high-density side of the solid region where re-entrant melting occurs, the shear
viscosity decreases significantly when the density is increased at constant temperature and
Newtonian behavior persists until very high strain rates. This behavior, which is attributed to particle
overlap, is in contrast to the monotonic increase in shear viscosity with density observed for the
Lennard-Jones potential. Contrary to the behavior of normal fluids, the viscosity is observed to
increase with increasing temperatures at high densities. This reflects a peculiarity of the GCM,
namely the approach to the “infinite-density ideal-gas limit.” The behavior is also consistent with
viscosity measurements of cationic surfactant solutions. In contrast to other potentials, the shear
viscosities for the Gaussian core potential at low to moderate strain rates are obtained with modest
statistical uncertainties. Zero shear viscosities extrapolated from the nonequilibrium simulations are
in good agreement with equilibrium Green–Kubo calculations. © 2009 American Institute of
Physics. �doi:10.1063/1.3273083�

I. INTRODUCTION

The viscoelastic behavior of nonequilibrium fluids is of
significant theoretical and industrial interest.1,2 It has been
experimentally determined that many fluids display shear
thinning, which is characterized by a decrease in viscosity
with increasing strain rate.2 In contrast, some complex fluids,
such as colloidal suspensions show shear thickening, i.e.,
their shear viscosities increase with increasing strain rate.2

Theoretical studies of flows under shear have largely focused
on unbounded interaction potentials, such as hard spheres or
the Lennard-Jones potential.3 However, during the past de-
cade bounded potentials such as the Gaussian core model
�GCM� have proved useful in the field of soft condensed
matter physics.4

Recent studies,5,6 indicate that the equilibrium transport
properties of the GCM fluid show anomalous behavior at
some state points. The self-diffusion coefficient and shear
viscosity were obtained from equilibrium molecular dynam-
ics using the Green–Kubo formulae. At constant temperature
but increasing density, the diffusivity increased and the shear
viscosity decreased, violating the Stokes–Einstein relation.7

An interesting relationship between equilibrium transport
anomalies and the excess entropy for a Gaussian core �GC�
system was recently discussed elsewhere.6,8 Anomalous ther-
modynamics and the microscopic structure for a different
core-softened fluid involving a combination of the Lennard-
Jones potential and a Gaussian well were also studied
recently.9 The occurrence of equilibrium transport anomalies

in the GCM fluid gives rise to the question of whether or not
the strain rate dependent shear viscosity is also anomalous.

In a number of studies the GCM is used as an effective
potential to explain aspects of soft condensed matter. For
example, the effective interaction between self-avoiding
polymer coils, dispersed in a good solvent, can be described
by the GCM.10,11 Additionally, the GCM has been applied12

to micelle aggregates to reproduce results from calorimetric
experiments of aqueous suspension of the ionic surfactant
sodium. Simulation of such aggregates built up from several
thousands of molecules become rapidly intractable if a de-
tailed description on an atomic level is retained. It is there-
fore tempting to consider such aggregates as “soft” particles
where the detailed interaction is replaced by an effective in-
teraction between the soft particles.

The aim of our study is to contribute to the understand-
ing of flow phenomena under shear for fluid particles with
bounded soft potentials. We report nonequilibrium molecular
dynamics13 �NEMD� calculations for the shear viscosity be-
havior of GCM fluids at different strain rates and state
points. To the best of our knowledge no nonequilibrium stud-
ies have been reported using potentials, such as the GCM,
which permits particle overlap.

II. THEORY

A. Intermolecular potential

We studied a system of particles without structure, inter-
acting via the GC potentiala�Electronic mail: rsadus@swin.edu.au.
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u�r� = � exp�− � r

�
�2� , �1�

where � and � are the height and width of the potential.
A feature of Eq. �1� is that the particles can overlap, i.e.,
r��, without catastrophic consequences for the simulation.

B. Simulation details

The initial configuration in all the simulations was a face
centered cubic lattice structure. The isothermal isochoric
NEMD simulations were performed by applying the standard
sllod equations13 of motion for planar Couette flow coupled
with Lees–Edwards13,14 periodic boundary conditions. A
Gaussian thermostat multiplier15 was used to keep the kinetic
temperature of the fluid constant. The equations of motion
were integrated with a five-value Gear predictor-corrector
scheme.16,17 The normal conventions were used for the re-
duced density ���=��3�, temperature �T�=kT /��, energy
�E�=E /��, pressure �p�= p�3 /��, viscosity ���=��2 /	m��,
strain rate ��̇�= �̇	m�2 /��, and time ���=�	� /m�2�. All
quantities quoted in this work are in terms of these reduced
quantities and the asterisk superscript will be omitted in the
rest of the paper.

The simulations covered five isochors of densities
�=0.1, 0.2, 0.3, 0.4, and 1.0, temperatures ranging from
T=0.015 to 3.0 and various strain rates from �̇=0.005 to 9.0.
The phase state points for our NEMD simulations are shown
in Fig. 1. The solid-liquid coexisting lines in Fig. 1 are cal-
culated using the GWTS-algorithm.14,18 Since our simula-
tions covered a wide range of temperatures and densities we
had to carefully choose the integration time step for different
state points such that the time step was small enough to solve
the equations of motion correctly and large enough to sample
phase space adequately. The equations of motion were inte-
grated with a time step of �=0.001. The cutoff radius for the
potential was 3.2�. The ensemble averages are reported
without any long-range corrections because the potential rap-
idly goes to zero at larger separations.

For each state point �� ,T , �̇� simulation trajectories were
typically run for 2�106 time steps. The first 4�105 time
steps of each trajectory were used either to equilibrate zero-
shearing field equilibrium molecular dynamics or to achieve
nonequilibrium steady state after the shearing field was

switched on. The remaining time steps in each trajectory
were used to accumulate the average values of thermody-
namic variables standard deviations. A system size of 4000
GC particles was used for all the simulations reported in this
paper.

C. Maximum safe strain rates

A well-known limitation of the sllod algorithm coupled
to a Gaussian thermostat is that it generates an artificial
“string-phase” at high strain rates.19–21 To avoid this problem
and to also avoid possible shear-induced ordering effects in
our analysis, we estimated the maximum strain rate that
could be safely used by analyzing the strain-rate dependent
internal energy per particle. The formation of strings of par-
ticles or shear-induced ordering causes a clear and easily
detectable breakdown in the internal energy profiles. For ex-
ample, in Fig. 2 we show the strain-rate dependent internal
energy per particle for different temperatures at a density of
�=0.1. A similar trend can be observed using viscosity data,
but the drop in the viscosity profiles is less pronounced, es-
pecially at higher strain rates. Using this procedure, we esti-
mated the maximum safe strain rates at different densities
and temperatures. These data are summarized in Table I.

We note that an alternative method for the accurate de-
tection of string phases would be to observe the drop in the
strain-rate configurational temperature.22 There are also
alternatives23 to the use of a Gaussian thermostat which
avoid the formation of the artificial string phases. Nonethe-
less, we found that the energy-drop method was sufficiently
reliable to avoid string phases and no string phases were
detected within the safe range of strain rates reported here.

III. RESULTS AND DISCUSSION

A. Shear viscosity: Strain-rate behavior

The shear viscosity as a function of strain rate at differ-
ent temperatures and densities is illustrated in Fig. 3. In all
cases we can observe a transition from Newtonian �strain-
rate independent� to non-Newtonian �strain-rate dependent�
behavior. For a given temperature up to densities of �=0.3,
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FIG. 1. Phase diagram of the GCM fluid showing the state points ���
covered by the NEMD simulations reported in this work.
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FIG. 2. Strain-rate dependent internal energy per particle as a function of
strain rate for different constant temperatures �as indicated on the lines� at a
density of �=0.1. The sharp drop after the increase in energy indicates the
occurrence of the string phase.
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the onset of this transition generally occurs at a lower strain
rate as the density is increased. Similarly, for any given den-
sity, increasing the temperature also generally reduces the
strain rate required to observe the transition between New-
tonian and non-Newtonian behavior. The effect of tempera-
ture is somewhat weaker than the effect of density.

The above description is consistent with the behavior
reported for the Lennard-Jones fluid. However, there is a
very noticeable exception. Normally, we would expect the
shear viscosity isochors �i.e., shear viscosity at constant den-
sity� to be progressively shifted to higher viscosity values,
with increasing densities. At T=0.015 �Fig. 3�a��, the
�=0.1, 0.2, and 0.3 isochors occur at progressively higher
shear viscosities. This trend is arrested at the �=0.4 isochor,
which straddles the �=0.3 isochor. The �=1.0 isochor com-
mences at viscosities less than that observed for �=0.2. Fur-
thermore, the onset of non-Newtonian behavior does not oc-
cur until much higher strain rates. The non-Newtonian part
of these anomalous isochors occurs in the conventional den-
sity sequence relative to the non-Newtonian parts of the
other isochors. Very high strain rates appear to restore nor-
mal behavior in the non-Newtonian region. Increasing the
temperature to T=0.020 �Fig. 3�b��, 0.025 �Fig. 3�c�� pro-
gressively removes the anomalous behavior at all strain rates.
The crossover point to normal behavior is at a temperature of
T=0.030 �Fig. 3�d��. We performed additional calculations
for temperatures up to T=1.0. At these higher temperatures
�Fig. 4�, normal behavior was observed.

This anomalous behavior reflects an approaching solid
state transition at low temperatures and moderately high den-
sities �around �
0.25� at which the shear viscosity rises
sharply �see Fig. 4a in Ref. 6�. Re-entrant melting occurs on
the high-density side of the solid region �Fig. 1�, which again
results in a decrease in the shear viscosity for densities near
the melting density.

Anomalous shear behavior ���0 /���T	0 has also been
reported6 in equilibrium calculations at temperatures up to
approximately T=0.032, which coincides with the anoma-
lous range of temperature observed here. In this region the
slope of the density dependent viscosity along an isotherm
can be characterized within three different stages �see Fig. 4b
in Ref. 6�. For ��0.3, the zero-shear viscosity increases
with increasing the density, which is typical for “normal”

liquids. Thereafter, the zero-shear viscosity passes through a
maximum, followed by an anomalous decrease in �0 upon
further compression. At higher densities, the zero-shear vis-
cosity passes through a minimum and increasing the density
further at constant temperature again causes an increase in
�0. The last situation coincides with a region of very high
particle overlap. For T
0.032, the anomaly disappears and
�0 increases with increasing �.

Figure 5 illustrates the viscosity profiles at �=1.0 for
temperatures ranging from T=0.04 to 3 and strain rates start-
ing from �̇=0.005. Generally, the viscosity increases with
temperature, which is contrary to the behavior of normal
dense liquids. However, at very high densities where pen-
etration of GC particles is dominant and the repelling force
between the particles becomes very small, the GCM system
approaches the so called “infinite-density ideal-gas limit.”10

Many thermodynamic and dynamic quantities indicate5 that
the GCM system is approaching this limit at a density of �
=1.0 and here, the system behaves like a dense gas rather
than a dense liquid. The unusual temperature dependence of
the viscosity shown in Fig. 5 reflects this peculiarity of the
GCM and the viscosity behavior at this density is in excel-
lent agreement with equilibrium Green–Kubo calculations.6

We note that there is recent experimental evidence24 for
such abnormal behavior. Kalur et al.24 measured the viscos-
ity behavior of cationic surfactant solutions and observed an
increase in viscosity with increasing temperature as depicted
in Fig. 5. They attributed the anomaly to wormlike micelles.
It is unlikely that such phenomena could be predicted using a
conventional unbounded potential, which suggests that the
GCM might have a useful role in understanding this aspect
of surfactant behavior. It is also evident from Fig. 5 that
increasing the temperature causes an increase in the degree
of shear thinning, i.e., the crossover between the Newtonian
and the non-Newtonian regime is shifted to lower strain
rates.

NEMD simulation studies commonly suffer from the
weakness that the quoted statistical uncertainties become in-
creasingly large in the zero-shear limit. This means that the
results cannot be applied directly to real fluids, which typi-
cally experience strain rates much lower than used in simu-
lations. Nonetheless, as evident from Figs. 3–5, reasonable
statistical uncertainties are obtained from the GCM at mod-

TABLE I. Maximum safe strain rates at different densities and temperatures. These strain rates avoid string
phases and shear-induced ordering. For state points without an entry the drop in the internal energy profiles
occurs at strain rates higher than a dimensionless value of 9.0. This situation occurs for all densities with
temperatures greater than T=0.30.

T �=0.1 �=0.2 �=0.3 �=0.4 �=1.0

0.015 0.4 0.4 0.5 1.2 3.0
0.020 0.6 0.8 1.2 1.8 3.0
0.025 0.7 1.0 1.6 2.0 5.0
0.030 0.9 1.2 2.0 3.0 5.0
0.040 1.0 1.8 3.0 5.0 7.0
0.060 1.6 5.0 5.0 7.0 ¯

0.080 3.0 7.0 7.0 ¯ ¯

0.100 5.0 ¯ ¯ ¯ ¯

0.300 ¯ ¯ ¯ ¯ ¯
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erately low strain rates. The reliability of the calculations for
low strain rates, improves with increasing density. The sta-
tistical uncertainties for the CGM are lower than observed
for unbounded potentials such as the Lennard-Jones potential

B. Fitting simulation data

As discussed in detail elsewhere,25–30 shear viscosity
data can be fitted to relatively simple relationships such as

� = �0 − �1�̇�, �2�

where �0 is the zero shear viscosity and �1 is a coefficient,
which depends on temperature and density. At temperatures
at or near the triple point of a Lennard-Jones fluid, good
agreement is obtained when �= 1

2 , which is consistent with
mode-coupling theory. However, better overall agreement30

for other temperatures and densities can be obtained using
other values of �. Figure 6 compares our simulation at
T=0.015 and �=0.01, fitted to Eq. �2�, using �= 1

2
��0=0.0245, �1=0.020� and a best fit value of �=0.75
��0=0.0230, �1=0.025�. It is evident from this comparison
that using a value of 1

2 fails to adequately reproduce the
simulation data, particularly at moderate strain rates, whereas
a value of �=0.75 gives good agreement for the entire range
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FIG. 3. Shear viscosity isochors as a function of strain rate for �a�
T=0.015, �b� T=0.02, �c� T=0.025, and �d� T=0.03. The isochors were
obtained for �=0.1 ���, 0.2 ���, 0.3 ���, 0.4 ���, and 1.0 ���. Note the
anomalous behavior at �
0.3. The lines are for guidance only.
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FIG. 4. Shear viscosity isochors as a function of strain rate for �a�
T=0.06, �b� T=0.08, �c� T=0.1, and �d� T=0.3. The isochors were obtained
for �=0.1 ���, 0.2 ���, 0.3 ���, and 0.4 ���. The lines are for guidance
only.
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of strain rates. The value of �= 1
2 is also an inadequate choice

for other temperatures and densities �not shown�.

C. Zero-shear viscosities

In view of the relatively modest statistical uncertainties
reported at low to moderate strain rates, it is reasonable to
extrapolate the NEMD results to zero strain rate and thereby
obtain the equilibrium or zero-shear viscosities. It is of inter-
est to compare these extrapolated values with equilibrium
values obtained elsewhere6 from Green–Kubo calculations.
Figure 7 compares Green–Kubo and extrapolated NEMD
zero-shear viscosities �0 along isochors at �=0.1, 0.2, 0.3,
0.4, and 1.0 as a function of temperature. The comparison
indicates that the discrepancies between NEMD zero shear
viscosities than Green–Kubo calculations for ��0.4 are
typically less than 5%. For �=1.0, the NEMD values are
between 1% and 12% higher than the Green–Kubo calcula-
tions. The zero-shear viscosity �0 shows a nonmonotonic
dependence on density for certain state conditions, which is
consistent with equilibrium simulations.6

IV. CONCLUSIONS

NEMD simulations of the shear viscosity behavior of the
GCM indicate anomalous behavior for shear viscosity isoch-
ors with respect to strain rate at low temperatures. The shear
viscosity is lower than would be normally expected and the
onset of shear thinning is delayed until much higher strain
rates. The high strain rate, non-Newtonian region of the iso-
chor appears to behave normally. Increasing the temperature
progressively reduces the anomaly. At T�0.03, the viscosity
isochor behaves normally at all strain rates, which is consis-
tent with zero-shear viscosity results for the GCM. The GCM
viscosity increases with temperature at high densities, which
is consistent with the behavior of dense gases when the
GCM system is approaching the so called infinite-density
ideal-gas limit. The statistical uncertainty in the viscosities
reported for low strain rates is considerably less than can be
obtained from the Lennard-Jones potential. Zero shear vis-
cosities, extrapolated from the NEMD data, are in generally
good agreement with equilibrium Green–Kubo calculations.
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